Qt wiki will be updated on October 12th 2023 starting at 11:30 AM (EEST) and the maintenance will last around 2-3 hours. During the maintenance the site will be unavailable.

QString: Difference between revisions

From Qt Wiki
Jump to navigation Jump to search
(Convert ExpressionEngine section headers)
m (JKSH moved page QtStrings to QString)

Revision as of 04:19, 12 April 2015

This article may require cleanup to meet the Qt Wiki's quality standards. Reason: Auto-imported from ExpressionEngine.
Please improve this article if you can. Remove the {{cleanup}} tag and add this page to Updated pages list after it's clean.

English 한국어

[toc align_right="yes" depth="1"]

Written By : Girish Ramakrishnan, ForwardBias Technologies

QString

The fundamentals of encoding are covered in BasicsOfStringEncoding. QString stores unicode strings. By definition, since QString stores unicode, a QString knows what characters it's contents represent. This is in contrast to a C-style string (char ) that has no knowledge of encoding by itself. A QString can be rendered on the screen or to a printer, provided there is a font to display the characters that the QString holds. All user-visible strings in Qt are stored in QString.

Internally, QString stores the string using the UTF-16 encoding. Each of the 2 bytes of UTF-16 is represented using a QChar. One main reason to use UTF-16 as the internal representation is that it makes it fast to use them with native unicode APIs' on the Mac OS X and Windows (which expect UTF-16).

For processing a C-style char-pointer or an array of bytes, QByteArray should be used instead of QString. See UsingQByteArray for more details.

Using C-style strings with QString

 QString string("Qt");

The above code is saved in some file with encoding called the the input charset. The compiler generates code that puts the C-style string "Qt" in memory with possibly some other encoding called the exec charset. At run time, QString gets a pointer to this memory location and needs to interpret and convert the bytes to unicode.

For converting the C-style string to Unicode, QString needs to know the exec charset. By default, Qt assumes that this is ASCII. Internally, this conversion uses the same code path as QString::fromAscii(). QString::fromAscii(), in turn, attempts to decode the characters as Latin-1 (since Ascii and Latin-1 are compatible). It is thus possible to get away with placing Latin-1 characters in C-strings.

QTextCodec::setCodecForCStrings(exec-charset) can be used to change the encoding that Qt uses to decode C-style strings. Calling this function makes QString::fromAscii() decode C-style strings using the new charset (in other words, it doesn't decode ASCII anymore).

The only reason to use QTextCodec::setCodecForCStrings is when the exec charset is not ASCII. A common case this occurs is when source files contain non-ASCII characters. Such source files are saved as UTF-8 and the exec charset of the compiler is set to UTF-8. QTextCodec::setCodecForCStrings("UTF-8") can then be used to make Qt interpret all the char pointers correctly as UTF-8.

Even though QTextCodec::setCodecForCStrings() is a nice convenience, it is recommended to use only ASCII characters in source files. The C++ standard only mandates ASCII support and does not specify what encodings are to be supported by the compiler. A string may be initialized with the euro character (U+20AC) in any of the following ways:

 QString euro1 = QString::fromUtf8("0AC"); // the eans Unicode sequence defined by c++ standard. ncodes the codepoint in UTF-8
 QString euro2 = QChar(0x20AC);
 static const char utf8_euro[] = "42\202\254"; // Euro symbol
 QString euro3 = QString::fromUtf8(utf8_euro, sizeof(utf8_euro));

All the above techniques require the source file to be only ASCII encoded.

Unicode methods in QString

A QChar represents a unicode code point. QString::unicode() returns the QChars of a QString. QString::utf16() returns ushort *. Notice that the function is not named toUtf16() because there is no conversion involved since the internal representation of QString is UTF-16.

QString::normalized() can be used for Unicode composition and decomposition.

A QChar is always 16-bit. Surrogate pairs are represented using multiple QChars. QChar::isHighSurrogate and QChar::isLowSurrogate can be used to get the surrogate order. QChar::unicode() will return the values. QChar::cell() and QChar::row() can be used to get the lower byte and the higher byte of the QChar.

QString::length() represents the number of QChars. Thus, it can be that the length does not actually refer to number of actual characters (when the string contains supplementary characters).

QString::toUtf8(), QString::fromUtf8(), QString::toUcs4(), QString::fromUcs4() help in UTF-8 and UTF-32 conversion.

Disabling QString(char *)

Even though the automatic conversion from C-style string to QString is convenient, it is often the source of many subtle bugs when using third party libraries. Qt provides an option of disabling automatic conversion from C-style strings to QString. For example,

 void gitCallback(const char *data)
 {
 QString string = data; // compile error. makes the author think about encoding of 'data'
 .
 }

Compile errors from above make the programmer rethink about using QString (maybe a QByteArray is a better option) and also try to figure out the encoding of the C-style string.

By defining the macro QT_NO_CAST_FROM_ASCII, the automatic conversion from C-strings to QString using QString::fromAscii() is disabled and results in a compile error. After adding the define, the above code should be changed to

 if (fruit== QString::fromUtf8("apple")) {  } // make explicit mention of encoding

Further reading